14 research outputs found

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    The Scientific Method as a Scaffold to Enhance Communication Skills in Chemistry

    Get PDF
    Scientific success in the field of chemistry depends upon the mastery of a wide range of soft skills, most notably scientific writing and speaking. However, training for scientific communication is typically limited at the undergraduate level, where students struggle to express themselves in a clear and logical manner. The underlying issue is deeper than basic technical skills; rather, it is a problem of students’ unawareness of a fundamental and strategic framework for writing and speaking with a purpose. The methodology has been implemented for individual mentorship and in our regional summer research program to deliver a blueprint of thought and reasoning that endows students with the confidence and skills to become more effective communicators. Our didactic process intertwines undergraduate research with the scientific method and is partitioned into six steps, referred to as “phases”, to allow for focused and deep thinking on the essential components of the scientific method. The phases are designed to challenge the student in their zone of proximal development so they learn to extract and ultimately comprehend the elements of the scientific method through focused written and oral assignments. Students then compile their newly acquired knowledge to create a compelling and logical story, using their persuasive written and oral presentations to complete a research proposal, final report, and formal 20 min presentation. We find that such an approach delivers the necessary guidance to promote the logical framework that improves writing and speaking skills. Over the past decade, we have witnessed both qualitative and quantitative gains in the students’ confidence in their abilities and skills (developed by this process), preparing them for future careers as young scientists

    2008 ESMD Space Grant Faculty Project

    Get PDF
    Objectives of this project was to: Gather senior design project ideas and internship opportunities: Relative to space explorationnd In support of the ESMD Space Grant Student Project Support NASAs Educational Framework Outcome 1: Contribute to the development of the STEM workforc

    Analysis of Interfacial Stresses between Composite Rebar and Concrete

    No full text
    The objective of this study is to investigate and compare the interfacial stresses between glass-fiber reinforced polymer (GFRP) composite rebar and concrete under axial loading. Rebars of three different cross-sections are considered: circular one and circular with two and four longitudinal ribs. The design analyses of the rebar configurations embedded in concrete are investigated by the 3D finite element method (FEM) using ANSYS software. FEM results convergence was examined with different FE mesh sizes comparing the calculated stresses. The influence of rib geometry on the operating stresses was also studied. The results of the interfacial stresses calculated are applied as a basis for estimation of the effectiveness of composite rebar configurations in concrete structures, which can provide good bond characteristics

    Elevated risk of carrying gentamicin-resistant Escherichia coli among U.S. poultry workers.

    Get PDF
    BackgroundAntimicrobial use in food-animal production is an issue of growing concern. The application of antimicrobials for therapy, prophylaxis, and growth promotion in broiler chicken production has been associated with the emergence and dissemination of antimicrobial-resistant enteric bacteria. Although human exposure to antimicrobial-resistant bacteria through food has been examined extensively, little attention has been paid to occupational and environmental pathways of exposure.ObjectiveOur objective was to measure the relative risk for colonization with antimicrobial-resistant Escherichia coli among poultry workers compared with community referents.MethodsWe collected stool samples and health surveys from 16 poultry workers and 33 community referents in the Delmarva region of Maryland and Virginia. E. coli was cultured from stool samples, and susceptibility to ampicillin, ciprofloxacin, ceftriaxone, gentamicin, nitrofurantoin, and tetracycline was determined for each E. coli isolate. We estimated the relative risk for carrying antimicrobial-resistant E. coli among poultry workers compared with community referents.ResultsPoultry workers had 32 times the odds of carrying gentamicin-resistant E. coli compared with community referents. The poultry workers were also at significantly increased risk of carrying multidrug-resistant E. coli.ConclusionsOccupational exposure to antimicrobial-resistant E. coli from live-animal contact in the broiler chicken industry may be an important route of entry for antimicrobial-resistant E. coli into the community

    The Scientific Method as a Scaffold to Enhance Communication Skills in Chemistry

    Get PDF
    Scientific success in the field of chemistry depends upon the mastery of a wide range of soft skills, most notably scientific writing and speaking. However, training for scientific communication is typically limited at the undergraduate level, where students struggle to express themselves in a clear and logical manner. The underlying issue is deeper than basic technical skills; rather, it is a problem of students\u27 unawareness of a fundamental and strategic framework for writing and speaking with a purpose. The methodology has been implemented for individual mentorship and in our regional summer research program to deliver a blueprint of thought and reasoning that endows students with the confidence and skills to become more effective communicators. Our didactic process intertwines undergraduate research with the scientific method and is partitioned into six steps, referred to as phases , to allow for focused and deep thinking on the essential components of the scientific method. The phases are designed to challenge the student in their zone of proximal development so they learn to extract and ultimately comprehend the elements of the scientific method through focused written and oral assignments. Students then compile their newly acquired knowledge to create a compelling and logical story, using their persuasive written and oral presentations to complete a research proposal, final report, and formal 20 min presentation. We find that such an approach delivers the necessary guidance to promote the logical framework that improves writing and speaking skills. Over the past decade, we have witnessed both qualitative and quantitative gains in the students\u27 confidence in their abilities and skills (developed by this process), preparing them for future careers as young scientists
    corecore